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Abstract—Let G  be a graph with vertex set ( )V G  and edge set 
( )E G

. We consider the problem of orienting the edges of a 

complete bipartite graph ,n nK
 so only two different in-degrees a  

and b  occur. An obvious necessary condition for orienting the 

edges of G  so that only two in-degrees a  and b  occur, is that 

there exist positive integers s  and t  satisfying 
| ( ) |s t V G 

 

and | ( ) |as bt E G  . In this paper, we show that the necessary 

condition is also sufficient for a complete bipartite graph ,n nK
. 

Furthermore, we give the algorithms of orientations with only 

two in-degrees of ,n nK
. 
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I. INTRODUCTION  

An orientation ( ( ), ( ))D V D A D  of an undirected graph 

( ( ), ( ))G V G E G  is a digraph obtained by replacing each 
undirected edge e E  with an arc from one end vertex of e  to 
the other. In the oriented problem, we are asked whether G  has 
an orientation satisfying some conditions. This is a basic 
problem in combinatorial optimization, and many beautiful 
results have been produced so far. Chen et al. [3] studied 
orientations of graphs satisfying the Ore condition. Fukunaga  
[4] investigated graph orientations with set connectivity 
requirements. Miao and Lin  [7] gave strong orientations of 
complete k -partite graphs achieving the strong diameter. The 
main purpose of this paper is to orient ,n nK  with a  or b  

arrowheads directed towards each vertex. 

Usually a digraph has many different in-degrees. This paper 
is to orient graph ,n nK  achieving only two in-degrees. This 

kind of oriented problem is useful in practice. Buhler et al. [1] 
considered the problem of orienting the edges of the n -
dimensional hypercube so that only two in-degrees occur for 
finding strategies for specific hat guessing games. 

Let D  be a digraph, for any ( )uv A D , we say that u  
dominates v  (or v  is dominated by u ) and denote it by u v . 

For any ( )v V D , the in-degree of v  is denoted by 

( ) | { ( ) : ( )} |d v u V D uv A D     and the out-degree of v  is 

denoted by ( ) |{ ( ) : ( )} |d v u V D vu A D    . For disjoint 

subsets X  and Y  of ( )V D , X Y  means that every vertex 
of X  dominates every vertex of Y , and we define 
[ , ] { ( ) : , }X Y xy A D x X y Y    . For graph-theoretical 
terminology and notation not defined here we follow[2, 6]. 

In this paper, ,n nK  is oriented to a digraph so that only two 

in-degrees a  and b  occur. For convenience, let [ , ]na b  be a 

shorthand for the problem of realizing an orientation of ,n nK  

whose only in-degrees are a  or b . In Section 2, we give a 
necessary and sufficient condition such that [ , ]na b  is realizable. 
In Section 3, we give some specified algorithms to construct 
the required orientations of ,n nK . 

II. MAIN RESULTS 

Lemma 2.1. Given a positive integer n , let ,n nK  be a 

complete bipartite graph. For , {0,1, 2, , }a b n  , if [ , ]na b  is 
realizable, then there exist positive integers s  and t  satisfying 
the following two equations: 

2

2 ,

.

s t n

as bt n

 
  



Proof.  Let  ,
n

a b  be realizable. Then there exixts an 

oriented graph whose only  in-degrees are a  or b . Let the in-
degree of s  vertices in ,n nK  be a . Then the in-degree of the 

remaining (2 )n s  vertices is b . Therefore, 

,| ( ) | 2n ns t V K n   , and 2
,| ( ) |n nas bt E K n   , where 

t n s  . 

Let G  be a nonoriented graph. For ( )U V G , denote the 
number of edges which have their both end-vertices in U  by 

( )e U . 
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Lemma 2.2.  [5] Given a nonoriented graph G  whose 
vertices are labeled 1 2, , , nv v v  and to whose vertices are 

associated non-negative integers 1 2( ), ( ), , ( )nv v v   , 

respectively; then, G  is orientable with ( )iv  arrowheads 

directed toward vertex iv  (for {1, 2, , }i n  ) if and only if 

( )

( ) ( )
v V G

v E G


 ∣ ∣ and  


( ) ( )

v U

e U v


 
for each ( ).U V G  (1) 

Lemma 2.3.  Given three positive integers  n , s  and t , let 

,n nK  be a complete bipartite graph and let , {0,1, 2, , }a b n   

with a b . If a , b , s , t  satisfy the following two equations: 

2

2 , (2)

. (3)

s t n

as bt n

 
  



Then  ,
n

a b  is realizable.  

Proof.  Case 1. s t . 

By a b  and , {0,1,2, , }a b n  , n a n b    and 

, {0,1,2, , }n a n b n    . We can deduce that 
2( ) ( ) ( ) (2 )( ) 2 [ (2 )]n a s n b t n a s n s n b n as b n s             

2 2 22n n n   . Set a n b   , b n a   , s t  , t s  . 
Now, a b   and s t  . Then $a', b', s', t'$ satisfy the 
conditions of Case 1.  By the proof of Case 1, [ , ]na b   is 

realizable. Then ,n nK  has an orientation D  whose only in-

degrees are a  or b . We consider the digraph D  obtained by 
reversing all the arcs in D . Note that ,n nK  is n -regular. Then 

[ , ]nn a n b    is realizable, i.e. [ , ]nb a  is realizable. So [ , ]na b  
is realizable. 

Case 2. s t . 

The proof of this case is similar to Case 1. 

Lemma 2.4.  Given three positive integers n , s  and t , let 

,n nK  be a complete bipartite graph and let , {0,1, 2, , }a b n   

with a b . If a , b , s , t  satisfy the following two equations: 

2

2

.

,s t n

as bt n

 
  



Then  ,
n

a b  is realizable. 

Proof. By a b  and , {0,1, 2, , }a b n  , n a n b    and 

, {0,1, 2, , }n a n b n    . We can deduce that 
2( ) ( ) ( ) (2 )( ) 2 [ (2 )]n a s n b t n a s n s n b n as b n s             

2 2 22n n n   . Then n a  and n b  satisfy the conditions 
of Lemma 2.3. By Lemma 2.3, [ , ]nn a n b   is realizable. 

Then ,n nK  has an orientation D  whose only in-degrees are 

n a  or n b . We consider the digraph D  obtained by 
reversing all the arcs in D . Note that ,n nK  is n -regular. Then 

[ ( ), ( )] [ , ]n nn n a n n b a b      is realizable.  

By Lemmas 2.1, 2.3 and 2.4, we can obtain the following 
theorem directly. 

Theorem 2.5.  Given a positive integer n , let ,n nK  be a 

complete bipartite graph. For , {0,1, 2, , }a b n  , [ , ]na b  is 
realizable if and only if there exist positive integers s  and t  
satisfying the following two equations: 

2

2 ,

.

s t n

as bt n

 
  



Corollary 2.6. Given a positive integer n , let ,n nK  be a 

complete bipartite graph. For , {0,1, 2, , }a b n  , the following 
results hold: 

( )a  if [ , ]na b  is realizable, then [ , ]nn a n b   is realizable; 

( )b  [0, ]nn  is realizable; 

( )c  if n  is even, then [ , ]
2 2 n

n n
 is realizable. 

III. ORIENTATION ALGORITHMS OF ,n nK  

In Section 2, we have proved that ,n nK  admits the 

orientation with only two in-degrees. In this section, we will 
show how to orient ,n nK  by specified algorithms. By the proofs 

of Lemmas 2.3 and 2.4, it is enough to consider the case where 
a b  and s t . 

Specially, 1,1K  has an orientation D  whose only in-degrees 

are 0  or 1 . Then 1[0,1]  is obviously realizable. In the 
following, suppose that 2n  . 

If a b , then, by the equations (2)  and (3) ,  
2

n
a b  . 

Note that a  is an integer and 
2

n
a  . Therefore, n  is even. 

Combining this with the fact that the degree of each vertex in 

,n nK  is n , ,n nK  admits an Euler tour. By the definition of 

Euler tour, there exists an oriented graph of ,n nK  whose only 

in-degree is 
2

n
. Then [ , ]

2 2 n

n n
 is realizable. Next assume that 

a b . By the equations (2)  and (3) , we have 
(2 )n b n

s
b a





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and 
( 2 )n n a

t
b a





. Combining this with the fact that s  and t  

are positive integers, 
2

n
a b  . 

By 
2

n
b  , b n b  . Since s t  and 2s t n  , 0n s  . 

We can deduce that 
2 (2 ) ( )n as bt as b n s as bn b n s           

2 2( )( ) ( )as bn n b n s as bn n bn sn bs a b n s n               

Hence ( ) 0a b n s   . Combining this with 0s  , a b n  . 

Case 1. a b n  . 

Let ( , )X Y  be a bipartition of ,n nK  with 

0 1 1{ , , , }nX u u u    and  0 1 1{ , , , }nY v v v   . By a b n  , 

(2 ) (2 ) (2 )

( ) 2

n b n n b n n b n
s n

b a b n b b n

  
   

   
, i.e., s n . 

Combining this with 2s t n  , t n . Then s t n  . 
Conversely, if s t , then By the equations (2)  and (3) , we 

have s t  and a b n  . If 0a  , then b n . Construct a 
special orientation such that X Y . Then the in-degree of 
each vertex in X  is 0 and the in-degree of each vertex in Y  is 
n . Therefore, [0, ]nn  is realizable. Next, assume that 0a  . 

For any iu X , orient ( )(mod )i l n iv u   for each 

0l  , 1 , , 1a  . We orient the remaining edges which are 
incident to iu  towards Y . Now, we obtain an oriented graph 
D . The in-degree of each vertex of X  in D  is a . For any 

iv Y , by the definition of D ,  ( )(mod )i i l nv u   for each 

0l  ,1 , , 1a  . The out-degree of each vertex of Y  in D  is 
a , and the in-degree of each vertex of Y  in D  is n a . Only 
two in-degrees a  and n a  occur in D . Set b n a  . 
Therefore, [ , ]na b  is realizable. Then we can obtain the 
following proposition directly. 

Proposition 3.1. Let a b  and a b n  . Then the 
oriented graph which is obtained by the above method has only 
two in-degrees a  and b . 

Case 2. a b n  . 

In this case,  s t . By a b n   and a b , 
(2 ) ( ) (2 ) ( )

0
n b n b a n n b n n n a b

n s n
b a b a b a

     
     

  
, 

i.e., s n . Combining this with 2s t n  , t n . Then 
s n t  . 

First, assume that 0a  . By a b n  , b n . If s b , 
2 2(2 ) ( ) ( )n as bt as b n s as bn b n s as sn n n s n              . 

This is a contradiction. So s b . 

Let ( , )X Y  be a bipartition of ,n nK  with 

0 1 1{ , , , }nX u u u   , 1 2Y Y Y  , 1 2Y Y  , and let 

1 0 1 1{ , , , }bY v v v   , 2 0 1 1{ , , , }n bY z z z    . Orient 

1 2Y X Y  .  Now, we obtain an oriented graph D  (see 

Fig.1). The in-degree of each vertex iu  of X  in D  is b . The 

in-degree of each vertex iv  of 1Y  in D  is 0  and the in-degree 

of each vertex jz  of 2Y  in D  is n . Denote the vertex set 

0 1 1{ , , }b sv v Y    by '
1Y . By s b , '

1| | 1Y  . 

 

FIGURE I.  THE ORIENTED GRAPH D 

Algorithm 3.1. 

INPUT: the above oriented graph D  with three in-degrees 
0, b  and n . 

0. Set : 0xl   for every 0,1, , 1x b s    , :yr n  for 

every 0,1, , 1y n b    , : 0i  , : 0j  . 

1. If il b , : 1i i  . 

2. If jr b , : 1j j  . 

3. Choose u X  satisfying i jv u z   in D . Reverse 

i jv u z   in D . Obtain *D . *:D D . 

4. Set : 1i il l   and : 1j jr r  . 

5. If 1i b s    and il b , output D . Otherwise, go to 
step 1. 

Theorem 3.2. Let 0a   and a b n  . Then Algorithm 
3.1 outputs D  which has only two in-degrees 0  and b . 

Algorithm 3.2 

INPUT: the above oriented graph D  with four in-degrees 
a , b , n a  and n b . 

0. Set :xl n a   for every 0,1, , 1x s   , :yr n b   for 

every 0,1, , 1y n s    , : 0i  , : 0j  . 

1. If jr b , : 1j j  . 

2. If il b , : 1i i  . 

3. Choose 

( 1)(mod ( )) ( 2)(mod ( )) ( 1)(mod ( )){ , , , , }j j n s j n s j b n sw w w w w         

satisfying j iz w v   in D . Reverse j iz w v   in D . 

Obtain *D . *:D D . 
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4. Set : 1j jr r   and : 1i il l  . 

5. If 1j n s    and jr b , output D . Otherwise, go to 

step 1. 

Theorem 3.3. Let 0 a b n s    ,  a s t   and 
a b n  . Then Algorithm 3.2 outputs D  which has only two 
in-degrees a  and b . 

Algorithm 3.3 

INPUT: the above oriented graph D  with four in-degrees 
a , b , n s b   and s a . 

0. Set :xl s a   for every 0,1, , 1x s   , :yr n s b    

for every 0,1, , 1y n s    , : 0i  , : 0j  . 

1. If il b , : 1i i  . 

2. If jr b , : 1j j  . 

3. Choose ( 1)(mod ) ( 1)(mod ){ , , , }i i s i a sq u u u      

2 ( 1)(mod ( )) ( 1)(mod ( ))( { , , , })\ j j n s j b s n sX w w w      satisfying 

i jv q z   in D . Reverse i jv q z   in D . Obtain *D . 
*:D D . 

4. Set : 1i il l   and : 1j jr r  . 

5. If 1i s   and il b , output D . Otherwise, go to step 1. 

Theorem 3.4. Let 0 a b  , n s b  , s b , a s t   and 
a b n  . Then Algorithm 3.3 outputs D which has onlu two 
in-degrees a  and b .  

Algorithm 3.4. 

INPUT: the above oriented graph D  with five in-degrees 
a , b , n s , s , and n . 

0. Set :xl n s   for every 0,1, , 1x a   , :yr s  for 

every 0,1, , 1y b   , :kr n  for every 

, 1, , 1k b b n a     , : 0i  , : 0j  . 

1. If jr b , : min{ : , 1 1}j r b j n a        . 

2. If il b , : 1i i  . 

3. Choose 1u X  satisfying i jv u z   in D . Reverse 

i jv u z   in D . Obtain *D . *:D D . 

4. Set : 1j jr r   and : 1i il l  . 

5. If 1j n a    and jr b , output D . Otherwise, go to 

step 1. 

Theorem 3.5. Let 0 a b  , n s b  , s b , a s t   
and a b n  . Then Algorithm 3.4 outputs D  which has only 
two in-degrees a  and b . 

Algorithm 3.5. 

INPUT: the above oriented graph D  with five in-degrees 
a , b , n a , n s b a   , and n b . 

0. Set :xl n a   for every 0,1, , 1x a   , 

:yr n s b a     for every 0,1, , 1y b a    , :kr n b   for 

every , 1, , 1k b a b a n a       , : 0i  , : 0j  . 

1. If jr b , : 1j j  . 

2. If il b , : 1i i  . 

3. Choose 

( 1)(mod ( )) ( 2)(mod ( )) ( 1)(mod ( )){ , , , , }j j n a j n a j b n aw w w w w         

satisfying j iz w v   in D . Reverse j iz w v   in D . 

Obtain *D . *:D D . 

4. Set : 1j jr r   and : 1i il l  . 

5. If 1j n a    and jr b , output D . Otherwise, go to 

step 1. 

Theorem 3.6. Let 0 a b  ,  s a , s t  and a b n  . 
Then Algorithm 3.5 outputs D  which has only two in-degrees 
a  and b . 
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